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Interference-aware Multiplexing for Deep Learning
in GPU Clusters: A Middleware Approach




Deep learning: An important cloud workload

* Deep learning (DL) are widely adopted as intelligent applications

* Computer Vision
* Natural Language Processing
 E-commerce Recommendation

e DL tasks are often trained in GPU clusters to achieve specific validations

(X Submit DL tasks Aiming at VGG16 |85% top1 acc
Naa | :> :{> NCF | 69% hit rate

Bert 88% F1 score

Shared GPU clusters YOLOvS | 84% mAP
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GPU Schedulers for Deep Learning Today

* Underutilization and long queueing delay of deep learning

e Up to 60% GPUs are below 10% utilization of Philly trace in Microsoft!ll and PAI trace in Alibabal]

* The longest delay spans more than 1,000 minutes in Philly trace and Helios trace in SenseTime!3!
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[1] Jeon, Myeongjae, et al. "Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads." In Proceedings of ATC. 2019.

[2] Weng, Qizhen, et al. "MLaaS in the wild: Workload analysis and scheduling in Large-Scale heterogeneous GPU clusters.” In Proceedings of NSDI, 2022.
Ol
0%%8 11/18/2023 [3] Hu, Qinghao, et al. "Characterization and prediction of deep learning workloads in large-scale gpu datacenters." In Proceedings of SC, 2021.



GPU Schedulers for Deep Learning Today

* Packing tasks via time or spatial multiplexing to improve GPU utilization

GPU GPU

Task A Task B

Time multiplexing Spatial multiplexing

* Time multiplexing: AntMan (OSDI’20), PilotFish (ATC’22), PipeSwitch (OSDI’20)...

e Spatial multiplexing: MPS and MIG in NVIDIA
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Is Always Good for Multiplexing?

* Multiple tasks may compete for the same required resources

e Severe interference among multiplexing tasks
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Inefficiencies in Low-level Multiplexing Solutions

* Kernel-level solutions: AntMan!l (OSDI’20)

* Too fine-grained
e (Can not effectively overlap the kernel computation with copy operations among different tasks

* Need tailored modifications for different DL frameworks such as Tensorflow and Pytorch
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8%%‘8 11/18/2023 [1] Xiao, Wencong, et al. "AntMan: Dynamic Scaling on GPU Clusters for Deep Learning." In Proceedings of OSDI. 2020.



Inefficiencies in Low-level Multiplexing Solutions

* Hardware-level isolation solutions: MPS!and MIG!?]

 MPS: A soft isolation solution for GPU multiplexing provided by NVIDIA
e Require application knowledge to properly set resource partitions
 Weak fault isolation: when a task fails, other co-located tasks may be affected
 MIG: A hard isolation solution for GPU multiplexing provided by NVIDIA

* Only supported by high-end GPU models

e Inflexible for dynamically allocating resources to tasks

[1] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html
[2] NVIDIA Multi-Instance GPU. https://www.nvidia.com/en-us/technologies/multi-instance-gpu

8%%8 11/18/2023


https://docs.nvidia.com/deploy/mps/index.html
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Inefficiencies in Low-level Multiplexing Solutions

* Hardware-level isolation solutions: MPS!and MIG!2]
* Too course-grained

* MPS and MIG can not separate PCl-e bandwidth
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A middleware Solution: IADeep

v'Dynamic
v'Less fine-grained

v’ Better control all shared resources to mitigate the interference
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A middleware Solution: IADeep

* Opportunities and Challenges

" Training-related configurations, such as batch size exhibit strong correlations

with various resource metrics
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A middleware Solution: IADeep

* Opportunities

e Q1: Which tasks to be co-located?

Choose appropriate tasks to multiplex on a GPU can mitigate interference

* Q2: How many tasks should be co-located?

Co-locate a suitable number of tasks can balance the waiting time and training time
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A middleware Solution: IADeep

* Challenges

C1: Task configurations heavily influence both interference and training progress

C2: Vast search space of task configurations

C3: Intricate coupling between adjusting task configurations and designing task

placement policies
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|ADeep: System Design

(D Online Scheduler: Find the optimal device to place the new arrival task
(@ Tuner: Tune configurations (batch sizes) to mitigate the interference

(3 Task Agent: Update the configurations for each co-located task
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|ADeep: Basic Optimization Problem

* Performance degradation (PD)

Drop in training throughput

1
PDE(xk) = [Fk(«F) x DT*(xk) x
a(+*) = 1R (+*) (+*) EFFICIENCTX (%)
{ Co-location interference } Statistical efficiency

This expression takes interference (IF) and training progress (EFFICIENCY) into
PD to address Challenge 1.
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|ADeep: Basic Optimization Problem

e Co-location interference
IF(*) = T°°(m) ~ T(m)
* Drop in throughput

DT () = mq/T (mg)-+m/T(m)

/ Gradient noise scale!l!

Ptmg
(pt+m

 Statistical efficiency

EFFICIENCY (%) =

T°(m) mg @¢+m
T(mo)  m @i+mg

PD(x) =

8%%‘8 11/18/2023 [1] Qiao, Aurick, et al. "Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning." In Proceedings of OSDI, 2021.
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|ADeep: Basic Optimization Problem

* Objective
 Minimize the overall performance degradation of all co-located tasks on each device

 Constraint

 The memory capacity limitation of each device

xé‘ is a binary variable indicating
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|ADeep: Online Task Placement

* Online Prediction

e Use an alternative solution that predicts co-location performance based only

on co-location patterns

e Collect training samples online and train the prediction model incrementally

e Task Placement

* Find the device with minimal performance degradation to place the task (Q1)

8%%8 11/18/2023
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|ADeep: Task Configuration Selection

* Finding task configurations

e Bayesian Optimization (GP-LCB) min w(a) = BY2\k (s, 0, sit, > MR () < ¢4
AEe keT
* Able to handle noise

* Efficient to find an optimal configuration from a vast search space (Challenge 2)

* Profiling memory usage

* Fit functions of batch size and memory usage to avoid OOM (memory
limitation constraint)

e Use cubic polynomial regression with an average testing error 0.06

8%%8 11/18/2023
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|ADeep: Co-location Optimization
* Optimization 1

* Regulate the average resource utilization of both SM and memory on each device
* Optimization 2

e Evaluate the performance gain of co-location (Q2)

* Find a tradeoff between waiting time and interference mitigation of assigning a task
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If positive, schedule The change of PD for

the task n, the overall each co-located task i.
CT will be worse.
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|ADeep Implementation

* Online Scheduler (5500 LOC in Go)

* On top of Kubernetes

* Develop a device plugin to expose device status

e Use etcd to store intermediate results

e Tuner (300 LOC in Python)

* On each GPU device

* Provides well-tuned batch sizes to each task agent
e Task Agent (360 LOC in Python)

e On each DL task

e Collect GPU memory and task runtime information and upload them to ectd

8%%8 11/18/2023
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Evaluation: Experiment setup

e Testbed

- A GPU cluster of 20 RTX 3090 GPUs managed by Kubernetes 1.18.13
- CUDA 11.4 & CUDNN 7 & NVIDIA Driver 470.57

e Workloads

8%%8 11/18/2023

- With job arrival process follows Microsoft trace

Task Name Dataset Validation = my (batch size) Optimizer Size Frac Tasks Filed
VGGI16 [60] CIFAR10 [42] 85% topl acc. 512 Adam S 14%
SqueezeNet [35] CIFAR10 50% topl acc. 512 Adam S 14% Image Classification
ResNet50 [32] CIFAR100 [42] 75% topl acc. 1024 Adam S 14%
NCF [33] Movielens [31] 69% hit rate 1024 SGD M 12% Recommend System
AD-GCL [62] REDDIT-MULTI-12K[3]  40% acc. 32 Adam M 12% Social Network
LSTM [55] Wikitext-2 [51] 4.0 PPL 256 Adadelta M 12% Text Generation
Bert(finetune) [22] SQuAD [57] 88% F1 score B AdamW L 10% Question Answering
YOLOvS [39] COCO [46] 84% mAP 32 scD L 10% Object Detection
ResNet18 [32] ImageMNet [21] 75% topl acc. 128 SGD XL 2% Image Classification

21



Evaluation: Experiment setup

 Baselines

 AntMan!!! Tencent’s solution based on MPSI2l Kernel Est.[3!

* Evaluation metrics
* CT: Average Complete Time of the overall tasks
* Makespan: The total time it takes to complete all tasks

* GPU resource utilization: SM utilization and memory utilization

[1] Xiao, Wencong, et al. "AntMan: Dynamic Scaling on GPU Clusters for Deep Learning." In Proceedings of OSDI. 2020.
[2] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html
8%%8 11/18/2023 [3] Xu, Xin, et al. "Characterization and Prediction of Performance Interference on Mediated Passthrough GPUs for Interference-aware Scheduler." In Proceedings of HotCloud. 2019. 22
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Evaluation: End-to-end performance

e A task stream contains 300 DL training tasks

* Up to 45% CT reduction compared to baselines

* Up to 67% makespan reduction compared to baselines

* 31% GPU utilization improvement
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3

B Antman mm Kernel Est.

SM Util(%)

MPS mm |[ADeep
Ao
9 \0 0,0
'\‘D‘\..D‘,\fbb‘ R 2
Q LN
CT Makespan

100

50

— Antman == Kernel Est.
MPS — |ADeep

0 1000 2000 3000

Time(min)

23



Evaluation: End-to-end performance

* A task stream contains 300 DL training tasks
* Convergence

* The training tasks can converge at several epochs to achieve the target validations
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Evaluation: End-to-end performance

e A task stream contains 300 DL training tasks

* Sensitivity to task arrival rate
* |ADeep always outperforms other baselines concerning the overall CT

* For makespan, IADeep achieves a linear speedup with the increase of task arrival rate
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Evaluation: Effectiveness of Interference Mitigation

* A task stream contains 300 DL training tasks

* GP-LCB (in Tuner) converges within 17 rounds and all search cost is within 2s

* Tuner alone improves CT and makespan by up to 45% and 20%
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Evaluation: Effectiveness of Task Assignment

* A task stream contains 300 DL training tasks

* RF as the Predictor achieves only 27.8% MAPE within 135 samples

* Online Predictor alone achieves up to 31% CT and 28% makespan reduction
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More Evaluations in our Paper

* Performance of Online Optimizer

= Optimizer alone performance improvement

= Scheduling overhead

8%%8 11/18/2023
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Conclusion

Interference-aware Multiplexing for Deep Learning in GPU Clusters

* Propose a formulation that quantifies co-location performance by combining
interference and job training progress
* Co-optimize cluster-level job assignment and per device interference control

* Achieve up to 49% in CT and up to 31% in GPU resource utilization

Thanks & QA

yc17498@um.edu.mo
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