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Deep learning: An important cloud workload

• Deep learning (DL) are widely adopted as intelligent applications

• Computer Vision

• Natural Language Processing

• E-commerce Recommendation

• …

• DL tasks are often trained in GPU clusters to achieve specific validations
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GPU Schedulers for Deep Learning Today

• Underutilization and long queueing delay of deep learning

• Up to 60% GPUs are below 10% utilization of Philly trace in Microsoft[1] and PAI trace in Alibaba[2]

• The longest delay spans more than 1,000 minutes in Philly trace and Helios trace in SenseTime[3]
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[1] Jeon, Myeongjae, et al. "Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads." In Proceedings of ATC. 2019.
[2] Weng, Qizhen, et al. "MLaaS in the wild: Workload analysis and scheduling in Large-Scale heterogeneous GPU clusters.“ In Proceedings of NSDI, 2022.
[3] Hu, Qinghao, et al. "Characterization and prediction of deep learning workloads in large-scale gpu datacenters." In Proceedings of SC, 2021.11/18/2023



GPU Schedulers for Deep Learning Today

• Packing tasks via time or spatial multiplexing to improve GPU utilization
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Task A Task B
GPU 40% SM GPU

Spatial multiplexingTime multiplexing

• Time multiplexing: AntMan (OSDI’20),  PilotFish (ATC’22), PipeSwitch (OSDI’20)…

• Spatial multiplexing: MPS and MIG in NVIDIA

11/18/2023

60% SM 



Is Always Good for Multiplexing?

• Multiple tasks may compete for the same required resources

• Severe interference among multiplexing tasks
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SMs & memory usage
Memory & PCI-e bandwidth…

Slowdown of multiplexing tasks 
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Inefficiencies in Low-level Multiplexing Solutions

• Kernel-level solutions: AntMan[1] (OSDI’20)

• Too fine-grained

• Can not effectively overlap the kernel computation with copy operations among different tasks

• Need tailored modifications for different DL frameworks such as Tensorflow and Pytorch

6[1] Xiao, Wencong, et al. "AntMan: Dynamic Scaling on GPU Clusters for Deep Learning." In Proceedings of OSDI. 2020.11/18/2023



Inefficiencies in Low-level Multiplexing Solutions

• Hardware-level isolation solutions:  MPS[1] and MIG[2] 

• MPS: A soft isolation solution for GPU multiplexing provided by NVIDIA

• Require application knowledge to properly set resource partitions

• Weak fault isolation: when a task fails, other co-located tasks may be affected

• MIG: A hard isolation solution for GPU multiplexing provided by NVIDIA

• Only supported by high-end GPU models

• Inflexible for dynamically allocating resources to tasks 
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[1] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html
[2] NVIDIA Multi-Instance GPU. https://www.nvidia.com/en-us/technologies/multi-instance-gpu
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Inefficiencies in Low-level Multiplexing Solutions

• Hardware-level isolation solutions:  MPS[1] and MIG[2] 

• Too course-grained

• MPS and MIG can not separate PCI-e bandwidth 
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[1] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html
[2] NVIDIA Multi-Instance GPU. https://www.nvidia.com/en-us/technologies/multi-instance-gpu
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A middleware Solution: IADeep

Dynamic

Less fine-grained

Better control all shared resources to mitigate the interference
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A middleware Solution: IADeep

• Opportunities and Challenges
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 Training-related configurations, such as batch size exhibit strong correlations 

with various resource metrics
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A middleware Solution: IADeep

• Opportunities

• Q1: Which tasks to be co-located?

• Choose appropriate tasks to multiplex on a GPU can mitigate interference

• Q2: How many tasks should be co-located?

• Co-locate a suitable number of tasks can balance the waiting time and training time
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A middleware Solution: IADeep

• Challenges

• C1: Task configurations heavily influence both interference and training progress

• C2: Vast search space of task configurations

• C3: Intricate coupling between adjusting task configurations and designing task 

placement policies 
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IADeep: System Design
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① Online Scheduler: Find the optimal device to place the new arrival task

② Tuner: Tune configurations (batch sizes) to mitigate the interference

③ Task Agent: Update the configurations for each co-located task
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IADeep: Basic Optimization Problem

• Performance degradation (PD)

𝑃𝐷𝑑
𝑘 ∗𝑘 = 𝐼𝐹𝑑

𝑘 ∗𝑘 × 𝐷𝑇𝑘 ∗𝑘 ×
1

𝐸𝐹𝐹𝐼𝐶𝐼𝐸𝑁𝐶𝑇𝑑
𝑘 ∗𝑘
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Co-location interference

Drop in training throughput

Statistical efficiency

This expression takes interference (IF) and training progress (EFFICIENCY) into 
PD to address Challenge 1.
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IADeep: Basic Optimization Problem

• Co-location interference

𝐼𝐹 ∗ = 𝑇𝑐𝑜 𝑚 ÷ 𝑇(𝑚)

• Drop in throughput

𝐷𝑇 ∗ = 𝑚0/𝑇(𝑚0)÷m/T(m)

• Statistical efficiency

𝐸𝐹𝐹𝐼𝐶𝐼𝐸𝑁𝐶𝑌(∗) =
𝜑𝑡+𝑚0

𝜑𝑡+𝑚

15[1] Qiao, Aurick, et al. "Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning." In Proceedings of OSDI, 2021.

Gradient noise scale[1]

𝑃𝐷 ∗ =
𝑇𝑐𝑜(𝑚)

𝑇(𝑚0)
.
𝑚0

𝑚
.
𝜑𝑡+𝑚

𝜑𝑡+𝑚0
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IADeep: Basic Optimization Problem

• Objective

• Minimize the overall performance degradation of all co-located tasks on each device

• Constraint

• The memory capacity limitation of each device
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𝑥𝑑
𝑘 is a binary variable indicating 

whether task k is placed on device d
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IADeep: Online Task Placement

• Online Prediction

• Use an alternative solution that predicts co-location performance based only 

on co-location patterns

• Collect training samples online and train the prediction model incrementally

• Task Placement

• Find the device with minimal performance degradation to place the task (Q1)

1711/18/2023



IADeep: Task Configuration Selection

• Finding task configurations

• Bayesian Optimization (GP-LCB)

• Able to handle noise

• Efficient to find an optimal configuration from a vast search space (Challenge 2)

• Profiling memory usage 

• Fit functions of batch size and memory usage to avoid OOM (memory 
limitation constraint)

• Use cubic polynomial regression with an average testing error 0.06
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IADeep: Co-location Optimization
• Optimization 1

• Regulate the average resource utilization of both SM and memory on each device

• Optimization 2

• Evaluate the performance gain of co-location (Q2)

• Find a tradeoff between waiting time and interference mitigation of assigning a task
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The change of PD for 

each co-located task i.

If positive, schedule 

the task n, the overall 

CT will be worse.
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IADeep Implementation
• Online Scheduler (5500 LOC in Go)

• On top of Kubernetes

• Develop a device plugin to expose device status

• Use etcd to store intermediate results

• Tuner (300 LOC in Python)

• On each GPU device

• Provides well-tuned batch sizes to each task agent

• Task Agent (360 LOC in Python)

• On each DL task

• Collect GPU memory and task runtime information and upload them to ectd
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Evaluation: Experiment setup
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• Testbed

- A GPU cluster of 20 RTX 3090 GPUs managed by Kubernetes 1.18.13 

- CUDA 11.4 & CUDNN 7 & NVIDIA Driver 470.57

• Workloads

- With job arrival process follows Microsoft trace
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Evaluation: Experiment setup
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• Baselines

• AntMan[1] , Tencent’s solution based on MPS[2] , Kernel Est.[3] 

• Evaluation metrics

• CT: Average Complete Time of the overall tasks

• Makespan: The total time it takes to complete all tasks

• GPU resource utilization: SM utilization and memory utilization

[1] Xiao, Wencong, et al. "AntMan: Dynamic Scaling on GPU Clusters for Deep Learning." In Proceedings of OSDI. 2020.
[2] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html
[3] Xu, Xin, et al. "Characterization and Prediction of Performance Interference on Mediated Passthrough GPUs for Interference-aware Scheduler." In Proceedings of HotCloud. 2019.11/18/2023
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Evaluation: End-to-end performance

• A task stream contains 300 DL training tasks 

• Up to 49% CT reduction compared to baselines

• Up to 67% makespan reduction compared to baselines

• 31% GPU utilization improvement
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Evaluation: End-to-end performance

• A task stream contains 300 DL training tasks 

• Convergence

• The training tasks can converge at several epochs to achieve the target validations
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Evaluation: End-to-end performance

• A task stream contains 300 DL training tasks 

• Sensitivity to task arrival rate

• IADeep always outperforms other baselines concerning the overall CT

• For makespan, IADeep achieves a linear speedup with the increase of task arrival rate
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Evaluation: Effectiveness of Interference Mitigation

• A task stream contains 300 DL training tasks 

• GP-LCB (in Tuner) converges within 17 rounds and all search cost is within 2s

• Tuner alone improves CT and makespan by up to 45% and 20%
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Evaluation: Effectiveness of Task Assignment

• A task stream contains 300 DL training tasks 

• RF as the Predictor achieves only 27.8% MAPE within 135 samples

• Online Predictor alone achieves up to 31% CT and 28% makespan reduction 
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More Evaluations in our Paper

• Performance of Online Optimizer 

 Optimizer alone performance improvement

 Scheduling overhead
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Conclusion

Interference-aware Multiplexing for Deep Learning in GPU Clusters

• Propose a formulation that quantifies co-location performance by combining 

interference and job training progress

• Co-optimize cluster-level job assignment and per device interference control

• Achieve up to 49% in CT and up to 31% in GPU resource utilization
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