

Interference-aware Multiplexing for Deep Learning in GPU Clusters: A Middleware Approach

Wenyan Chen, Zizhao Mo, Huanle Xu, Kejiang Ye, Chengzhong Xu

澳門大*學* UNIVERSIDADE DE MACAU UNIVERSITY OF MACAU

中国科学院深圳先进技术研究院 HENZHEN INSTITUTES OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES

Deep learning: An important cloud workload

- Deep learning (DL) are widely adopted as intelligent applications
 - Computer Vision
 - Natural Language Processing
 - E-commerce Recommendation
- DL tasks are often trained in GPU clusters to achieve specific validations

•

...

GPU Schedulers for Deep Learning Today

- Underutilization and long queueing delay of deep learning
 - Up to 60% GPUs are below 10% utilization of Philly trace in Microsoft^[1] and PAI trace in Alibaba^[2]
 - The longest delay spans more than 1,000 minutes in Philly trace and Helios trace in SenseTime^[3]

[1] Jeon, Myeongjae, et al. "Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads." In Proceedings of ATC. 2019.
 [2] Weng, Qizhen, et al. "MLaaS in the wild: Workload analysis and scheduling in Large-Scale heterogeneous GPU clusters." In Proceedings of NSDI, 2022.
 [3] Hu, Qinghao, et al. "Characterization and prediction of deep learning workloads in large-scale gpu datacenters." In Proceedings of SC, 2021.

11/18/2023

GPU Schedulers for Deep Learning Today

Packing tasks via time or spatial multiplexing to improve GPU utilization

- Time multiplexing: AntMan (OSDI'20), PilotFish (ATC'22), PipeSwitch (OSDI'20)...
- Spatial multiplexing: MPS and MIG in NVIDIA

Is Always Good for Multiplexing?

- Multiple tasks may compete for the same required resources
- Severe interference among multiplexing tasks

Slowdown of multiplexing tasks

Inefficiencies in Low-level Multiplexing Solutions

- **Kernel-level** solutions: AntMan^[1] (OSDI'20)
 - Too fine-grained
 - Can not effectively overlap the kernel computation with copy operations among different tasks
 - Need tailored modifications for different DL frameworks such as Tensorflow and Pytorch

Inefficiencies in Low-level Multiplexing Solutions

- Hardware-level isolation solutions: MPS^[1] and MIG^[2]
 - MPS: A soft isolation solution for GPU multiplexing provided by NVIDIA
 - Require application knowledge to properly set resource partitions
 - Weak fault isolation: when a task fails, other co-located tasks may be affected
 - MIG: A hard isolation solution for GPU multiplexing provided by NVIDIA
 - Only supported by high-end GPU models
 - Inflexible for dynamically allocating resources to tasks

Inefficiencies in Low-level Multiplexing Solutions

- Hardware-level isolation solutions: MPS^[1] and MIG^[2]
 - Too course-grained
 - MPS and MIG can not separate PCI-e bandwidth

 (1) NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html

 (2) NVIDIA Multi-Instance GPU. https://www.nvidia.com/deploy/mps/index.html

✓ Dynamic

✓ Less fine-grained

✓ Better control all shared resources to mitigate the interference

- Opportunities and Challenges
 - Training-related configurations, such as *batch size* exhibit strong correlations with various resource metrics

Opportunities

- Q1: Which tasks to be co-located?
 - Choose appropriate tasks to multiplex on a GPU can mitigate interference
- Q2: How many tasks should be co-located?
 - Co-locate a suitable number of tasks can balance the waiting time and training time

Challenges

- **C1:** Task configurations heavily influence both interference and training progress
- C2: Vast search space of task configurations
- C3: Intricate coupling between adjusting task configurations and designing task placement policies

IADeep: System Design

(1) Online Scheduler: Find the optimal device to place the new arrival task

2 **Tuner**: Tune configurations (batch sizes) to mitigate the interference

③ Task Agent: Update the configurations for each co-located task

IADeep: Basic Optimization Problem

• Performance degradation (PD)

This expression takes interference (IF) and training progress (EFFICIENCY) into PD to address Challenge 1.

IADeep: Basic Optimization Problem

Co-location interference

 $IF(*) = T^{co}(m) \div T(m)$

• Drop in throughput

 $DT(*) = m_0/T(m_0) \div m/T(m)$

• Statistical efficiency

IADeep: Basic Optimization Problem

- Objective
 - Minimize the overall performance degradation of all co-located tasks on each device
- Constraint
 - The memory capacity limitation of each device

$$\min \sum_{d=1}^{D} \sum_{k=1}^{N} x_d^k \cdot \mathsf{PD}_d^k(\star^k)$$

s.t.,
$$\sum_{k=1}^{N} x_d^k \cdot \mathsf{PM}^k(\star^k) \le \mathsf{C}_d, \forall d,$$
$$\sum_{d=1}^{D} x_d^k = 1, \forall k, \text{ and } x_d^k \in \{0, 1\}$$

 x_d^k is a binary variable indicating whether task k is placed on device d

IADeep: Online Task Placement

- Online Prediction
 - Use an alternative solution that predicts co-location performance based only on co-location patterns
 - Collect training samples online and train the prediction model incrementally
- Task Placement
 - Find the device with minimal performance degradation to place the task (Q1)

IADeep: Task Configuration Selection

- Finding task configurations
 - Bayesian Optimization (GP-LCB)
 - Able to handle noise

 $\min_{\Delta \in \Re} \mu(\Delta) - \beta_n^{1/2} \sqrt{k(\Delta, \Delta)}, \text{ s.t., } \sum_{k \in \mathcal{T}} \mathsf{PM}^k(\star^k) \leq \mathsf{C}_d$

- Efficient to find an optimal configuration from a vast search space (Challenge 2)
- Profiling memory usage
 - Fit functions of batch size and memory usage to avoid OOM (memory limitation constraint)
 - Use cubic polynomial regression with an average testing error 0.06

IADeep: Co-location Optimization

- Optimization 1
 - Regulate the average resource utilization of both SM and memory on each device
- Optimization 2
 - Evaluate the performance gain of co-location (Q2)
 - Find a tradeoff between *waiting time* and *interference mitigation* of assigning a task

IADeep Implementation

- Online Scheduler (5500 LOC in Go)
 - On top of *Kubernetes*
 - Develop a *device plugin* to expose device status
 - Use <u>etcd</u> to store intermediate results
- Tuner (300 LOC in Python)
 - On each GPU device
 - Provides well-tuned *batch sizes* to each task agent
- Task Agent (360 LOC in Python)
 - On each DL task
- Collect GPU memory and task runtime information and upload them to ectd
 I1/18/2023

Evaluation: Experiment setup

- Testbed
 - A GPU cluster of 20 RTX 3090 GPUs managed by Kubernetes 1.18.13
 - CUDA 11.4 & CUDNN 7 & NVIDIA Driver 470.57
- Workloads

- With job arrival process follows Microsoft trace

Task Name	Dataset	Validation	m_0 (batch size)	Optimizer	Size	Frac. Tasks	Filed
VGG16 [60]	CIFAR10 [42]	85% top1 acc.	512	Adam	S	14%	
SqueezeNet [35]	CIFAR10	50% top1 acc.	512	Adam	S	14%	Image Classification
ResNet50 [32]	CIFAR100 [42]	75% top1 acc.	1024	Adam	S	14%	_
NCF [33]	MovieLens [31]	69% hit rate	1024	SGD	Μ	12%	Recommend System
AD-GCL [62]	REDDIT-MULTI-12K[3]	40% acc.	32	Adam	Μ	12%	Social Network
LSTM [55]	Wikitext-2 [51]	4.0 PPL	256	Adadelta	Μ	12%	Text Generation
Bert(finetune) [22]	SQuAD [57]	88% F1 score	8	AdamW	L	10%	Question Answering
YOLOv5 [39]	COCO [46]	84% mAP	32	SGD	L	10%	Object Detection
ResNet18 [32]	ImageNet [21]	75% top1 acc.	128	SGD	XL	2%	Image Classification

Evaluation: Experiment setup

- Baselines
 - AntMan^[1], Tencent's solution based on MPS^[2], Kernel Est.^[3]
- Evaluation metrics
 - CT: Average Complete Time of the overall tasks
 - Makespan: The total time it takes to complete all tasks
 - GPU resource utilization: SM utilization and memory utilization

[1] Xiao, Wencong, et al. "AntMan: Dynamic Scaling on GPU Clusters for Deep Learning." In Proceedings of OSDI. 2020.
 [2] NVIDIA Multi-Process Service. https://docs.nvidia.com/deploy/mps/index.html

Evaluation: End-to-end performance

- A task stream contains 300 DL training tasks
 - Up to 49% CT reduction compared to baselines
 - Up to 67% makespan reduction compared to baselines
 - 31% GPU utilization improvement

Evaluation: End-to-end performance

- A task stream contains 300 DL training tasks
 - Convergence
 - The training tasks can converge at several epochs to achieve the target validations

Evaluation: End-to-end performance

- A task stream contains 300 DL training tasks
 - Sensitivity to task arrival rate
 - IADeep always outperforms other baselines concerning the overall CT
 - For makespan, IADeep achieves a linear speedup with the increase of task arrival rate

Evaluation: Effectiveness of Interference Mitigation

- A task stream contains 300 DL training tasks
 - GP-LCB (in Tuner) converges within 17 rounds and all search cost is within 2s
 - Tuner alone improves CT and makespan by up to 45% and 20%

Evaluation: Effectiveness of Task Assignment

- A task stream contains 300 DL training tasks
 - RF as the Predictor achieves only 27.8% MAPE within 135 samples
 - Online Predictor alone achieves up to 31% CT and 28% makespan reduction

More Evaluations in our Paper

- Performance of Online Optimizer
 - Optimizer alone performance improvement
 - Scheduling overhead

Conclusion

Interference-aware Multiplexing for Deep Learning in GPU Clusters

Propose a formulation that quantifies co-location performance by combining

interference and job training progress

- Co-optimize cluster-level job assignment and per device interference control
- Achieve up to 49% in CT and up to 31% in GPU resource utilization

Thanks & QA

