

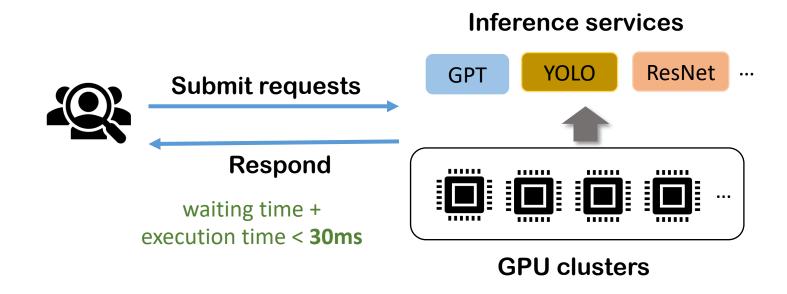
Multiplexing Dynamic Deep Learning Workloads with SLO-awareness in GPU Clusters

Wenyan Chen^{1,2}, Chengzhi Lu^{1,2,3}, Huanle Xu¹, Kejiang Ye² and Chengzhong Xu¹

¹University of Macau ²Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences ³University of Chinese Academy of Sciences

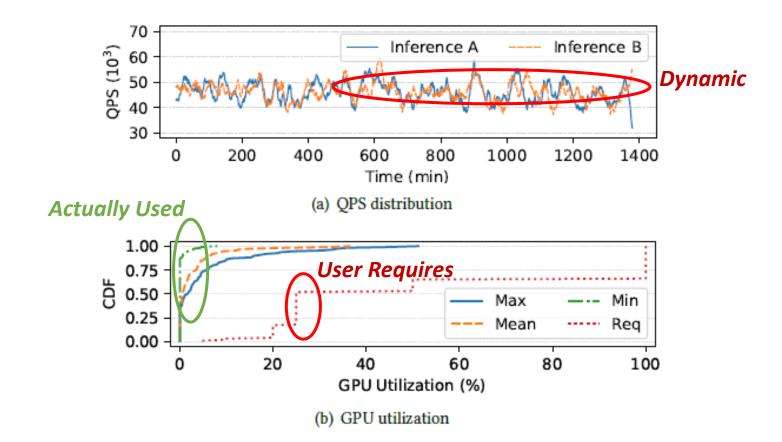
Deep learning (DL) inference with GPUs

- GPUs are widely used as inference accelerators
- Service-level objective (SLO) must be satisfied
- Batching is used to handle inference requests



DL inference in GPU clusters

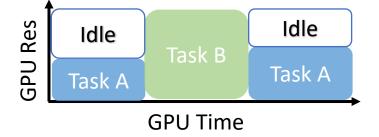
- Inference requests Fluctuating and unpredictable



Approaches to Improve GPU Utilization

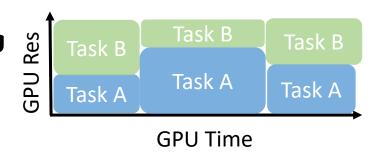
Packing multiple tasks on the same GPU via time sharing or spatial sharing

Time sharing



Still underutilize spatial resources

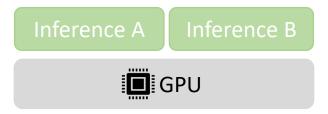
Spatial sharing

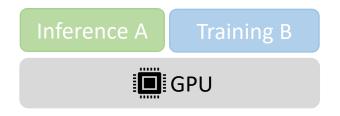


- MPS More flexible Good!
 - Small granularity of resource allocation (1%~100%)
- MIG Less flexible; Higher Cost
 - Limited resource allocation strategies available (18 cases)
 - Large allocation strategy change overhead (restart all instances)

Spatial Multiplexing of GPUs

Inference with inference or Inference with training





Interference of Multiplexing DL tasks

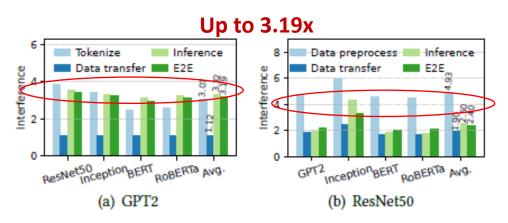
• Breakdown the executing process of inference

Tokenize/Data Preprocess

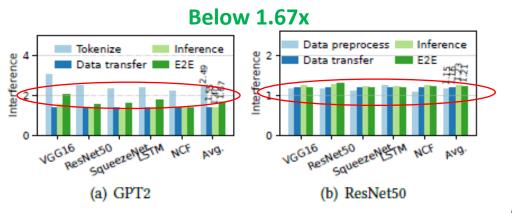
Data Transfer

Inference

- Observation: e2e interference on inference is smaller when multiplexing inference with training
 - Inference with inference



Inference with training



Interference of Multiplexing DL tasks

In-depth analysis of the reasons

- Tokenize/Data Preprocess: Parallel, requiring substantial CPUs for execution, leading to CPU contention
- Data Transfer: The frequency of data transfers required by training is less than that of inference
- Inference: The control flow accounts for up to 72%^[1] of the total execution time in the inference stage
- GPU and memory utilization is high when inference is multiplexed with training

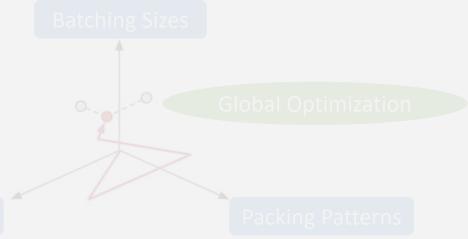
Multiplexing inference service with training tasks is more beneficial

Can we maintain low latency for inference and high throughput for training?

Unpredictable QPS for inference and unobserved training tasks

Mudi - New Multiplexing system for highly dynamic DL workloads that prioritizes SLO-awareness • C₃: Large optimization space inference

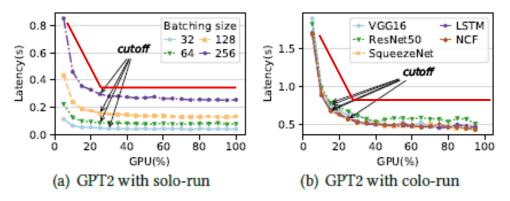
Packing patterns, SM% and batching sizes



Key Ideas

In: Explicit modeling of inference latency

- Use piece-wise linear function to fit the relationship between latency and resource partitions
- Address large-optimization space
- Seamless coordination of cluster-wide co-location and device-level interference control

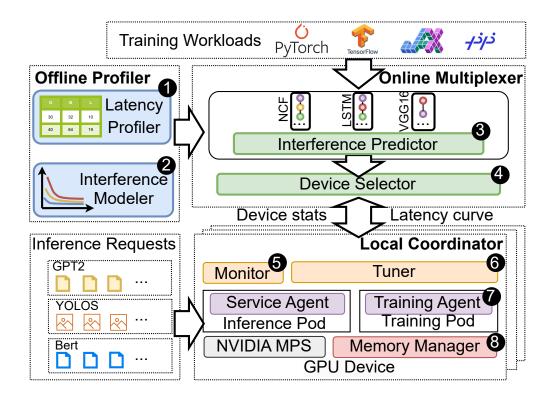


I₂: Predicting interference using underlying network architectures

- Use network architecture to estimate the slope of piece-wise linear function
- Adapt to dynamic training workloads

System Architecture: Mudi

- Offline Profiler: Profile the interference latency curves of colocated tasks
- Online Multiplexer: Record the requests and make packing decisions
- Local Coordinator: Monitor QPS of each inference and update configurations



Inference Latency Quantification

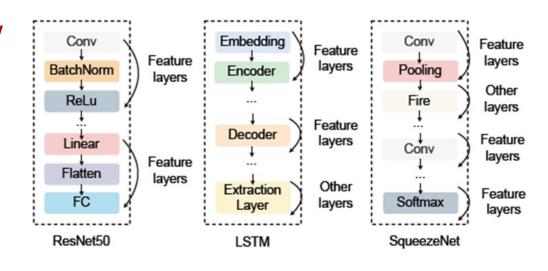
Inference Latency Profiling

• Fit piece-wise linear functions for each inference with various training tasks

$$L_{b,\Psi}^{i} = \begin{cases} k_{\Psi,1}^{i} \cdot (\Delta_{i} - \Delta_{0}) + l_{0}, & \Delta_{i} \leq \Delta_{0}, \\ k_{\Psi,2}^{i} \cdot (\Delta_{i} - \Delta_{0}) + l_{0}, & otherwise. \end{cases}$$

Online Prediction

- Utilize the network layers (which and how many) and configs (bs, GPU%) as Interference Predictor's input
- Online Multiplexer forecasts the interfered latency of inference based on offline profiles



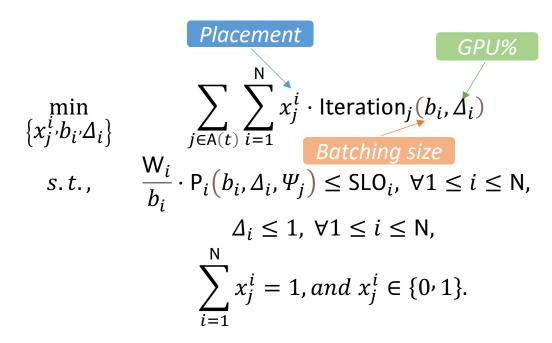
Online Multiplexing Approach

Optimization Model

- Objective
 - Minimize the overall training time of all colocated training tasks on each device

Constraint

The inference latency should meet the SLO of each inference request

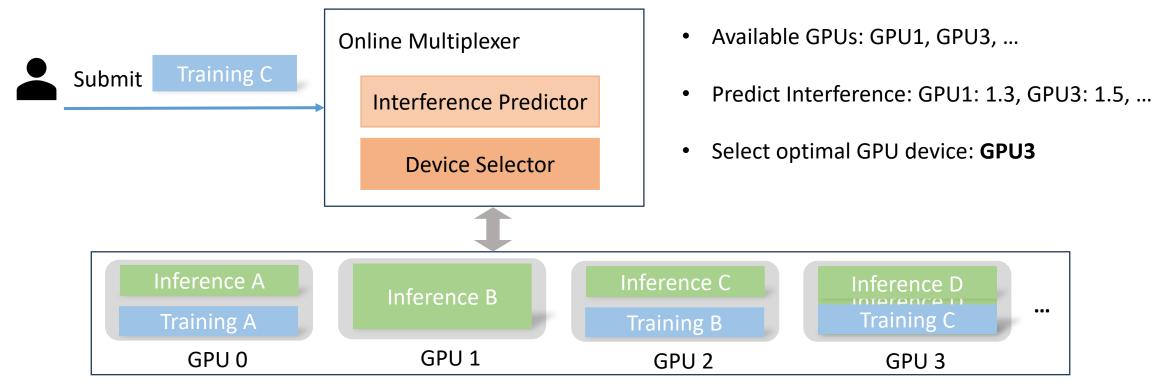


Cluster-wide workload co-location

Cluster-wide co-location

Find the best Placement

The Device Selector assigns training task to the device that yields the smallest slope



Device-level Multiplexing

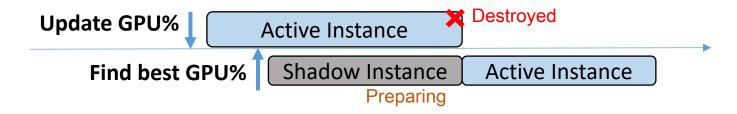
- Adaptive Batching Find the optimal Batching size
 - Use Gaussian Process (GP) as surrogate model and acquisition function based on the lower confidence bound (LCB) to guide the exploration process

$$\min_{b_i \in \mathcal{R}} \mathcal{A}(b_i) = \mu(b_i, \Delta_i) - \beta_n^{1/2} \sqrt{\sigma(b_i, \Delta_i)}.$$

- Dynamic Resource Scaling Find the optimal GPU%
 - Find the optimal GPU% while meeting SLOs using CVXPY

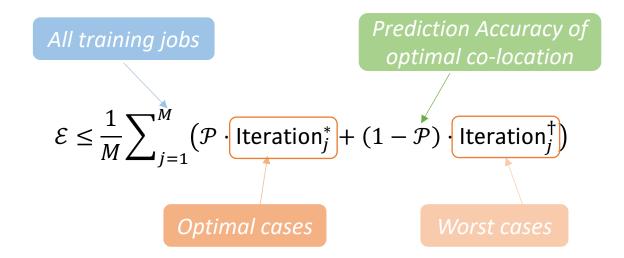
$$\Delta_i = \operatorname{argmin} \Delta$$
, s.t., $W_i/b_i \cdot P_i(b_i, \Delta, \Psi_i) \leq SLO_i$

Use shadow instance to overlap the restarting cost of updating GPU%



Optimality Analysis

- Identify the optimal co-location 92.67%
- **Iteration time** bounded by 1.10x
- **SLO violation** bounded by 1.08x (Optimal as 1.0)



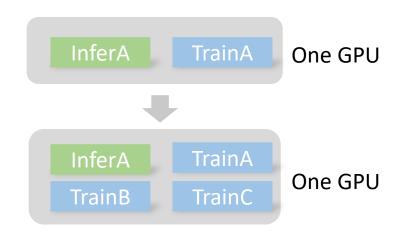
System Optimization

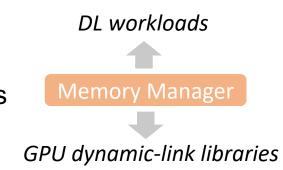
Extension to Multiplexing more tasks

- No more than three training (IADeep SC'23)
- Profile more samples (one inference with two/three training)
- Designate cumulative feature layers as ψ
- Evenly distribute the unassigned resource partitions

Memory Management

- Prevent out-of-memory errors
- Dynamically swap memory between GPU and host for training tasks
- A middleware between DL tasks and dynamic-link libraries





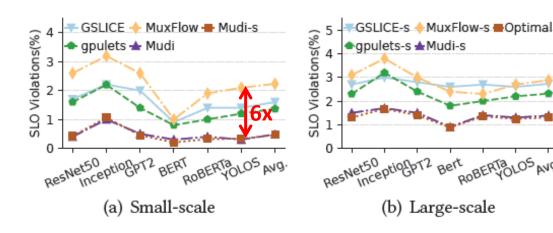
Experimental Setup

- Physical cluster 3 physical servers with each equipes 4 A100 GPUs
- Large-scale cluster use 1000 processes to simulate a 1000-GPU large-scale cluster based on more profiles
- Baselines GSLICE (SoCC'20), MuxFlow (ByteDance), gpulets (ATC'22)
- **DL workloads** arrival rates follow Microsoft trace

Field	Model	Dataset	Param (M)	SLO (ms)				
•	ResNet50 [25]	ImageNet [13]	25.6	150				
•	Inception [65]	ImageNet	23.8	120				
*	GPT2 [52]	SQuAD [53]	335	100				
\Diamond	BERT [14]	SQuAD	110	330				
4	RoBERTa [40]	SQuAD	125	110				
٠	YOLOS [16]	COCO [39]	30.7	2200				
♦ Image Classification ★ Text Generation ♥ Language Modeling ♣ Q								

Table 3. DL training tasks from various domains									
Field	Task Name	Dataset	Optimizer	batchsize	Size	Frac.			
•	VGG16 [60]	CIFAR10 [36]	Adam	512	S	14%			
•	SqueezeNet [31]	CIFAR10	Adam	512	S	14%			
•	ResNet50 [25]	CIFAR100 [36]	Adam	1024	S	14%			
⊳	NCF [26]	MovieLens [23]	SGD	1024	M	12%			
4	LSTM [49]	Wikitext-2 [42]	Adadelta	256	M	12%			
	AD-GCL [64]	Reddit[3]	Adam	64	M	12%			
	Bert [14]	SQuAD [53]	AdamW	32	L	12%			
•	YOLOv5 [33]	COCO [39]	SGD	64	L	10%			
•	ResNet18 [25]	ImageNet [13]	SGD	128	XL	2%			
♦ Image Classification > Recommendation System □ Social Network ♡ Language Modeling ♠ Object Detection ♠ Question Answering.									

End-to-End Performance



SLO violations for inference

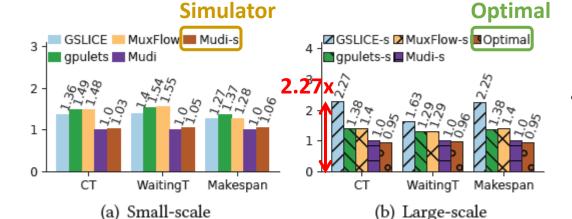
- As low as 0.5% (1.2%) in small / large cluster
- Achieve up to 6x SLO violation reduction

CT for Training

Achieve up to 2.27x CT reduction

Simulator Fidelity

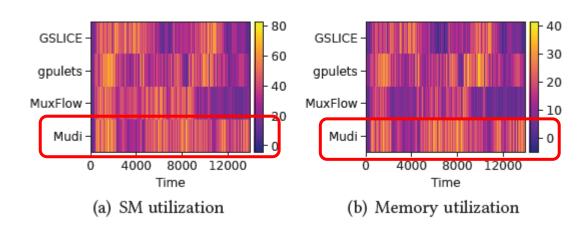
Minor discrepancies of < 4.7% in SLO violation and CT



Optimality Analysis

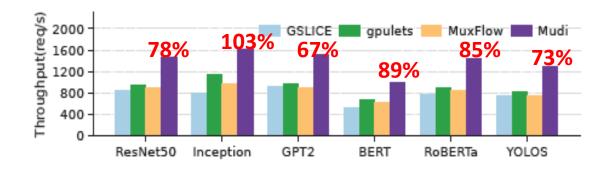
- Discrepancy of SLO violation is only 5.86%
- Training performance deviates from Optimal by no more than 5%

End-to-End Performance



GPU Utilization in physical cluster

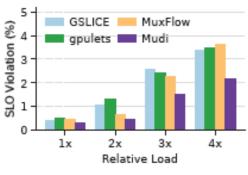
- SM utilization improvement 37%
- Memory utilization improvement 19%
- Effective co-design of cluster-level and device-level multiplexing

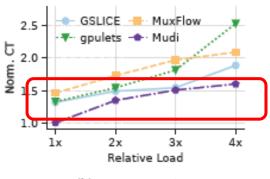


System Throughput

- Increase requests loads until the SLO is not satisfied
- Achieve up to 103% throughput for all inferences

End-to-End Performance



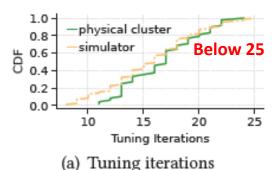


(a) SLO violation

(b) Norm. CT

Sensitivity to Heavy loads

- Higher SLO violations / longer CTs with increasing loads
- Mudi exhibits a nonlinear increase and surpasses the baselines for all cases





(b) Multiplexing overhead

System Overhead

- Tuning iteration <25
- Multiplexing overhead <18ms in physical cluster and <30ms in simulated cluster

More evaluations

- Accuracy of interference modeling
- Effectiveness of cluster-level co-location
- Effectiveness of per-device control
- Capability to handle more training tasks

•

Summary

Problem: How to maintain low latency of inference and high throughput for training?

Rey Insight - Multiplexing training with inference has **much lower** interference on inference services

Key Ideas

- Explicit modeling of inference latency using piece-wise linear functions
- Predicting interference using underlying network architectures

Results - Mudi reduces CT of training by 2.27x with SLO compliance for inference requests

