
EuroSys 2025

Multiplexing Dynamic Deep Learning Workloads
with SLO-awareness in GPU Clusters

Wenyan Chen1,2, Chengzhi Lu1,2,3, Huanle Xu1, Kejiang Ye2 and Chengzhong Xu1

1University of Macau
2Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

3University of Chinese Academy of Sciences

Deep learning (DL) inference with GPUs

2

ResNetYOLOGPT

…

Inference services

waiting time +
execution time < 30ms

GPU clusters

• GPUs are widely used as inference accelerators

• Service-level objective (SLO) must be satisfied

• Batching is used to handle inference requests

…
Submit requests

Respond

DL inference in GPU clusters
Inference requests - Fluctuating and unpredictable

 GPU resource – Underutilization and over-provisioning

3

Dynamic

Actually Used

User Requires

Approaches to Improve GPU Utilization

Packing multiple tasks on the same GPU via time sharing or spatial sharing

Spatial sharing

Time sharing

4

GPU Time

Task A

Task B
Task A

Task B Task B

Task A

GP
U

 R
es

• Rounded-based interleaved execution of various tasks
• Increase utilization by reducing idle GPU cycles

• MPS
• Small granularity of resource allocation (1%~100%)

• MIG
• Limited resource allocation strategies available (18

cases)
• Large allocation strategy change overhead (restart all

instances)

More flexible

Less flexible; Higher Cost

Good!

Still underutilize spatial resources

GPU Time

Task A
Task B

Task A

GP
U

 R
es Idle Idle

Spatial Multiplexing of GPUs

5

Inference A Inference B

GPU

Inference with inference

Inference A Training B

Inference with trainingor

GPU

Interference of Multiplexing DL tasks
• Breakdown the executing process of inference

• Observation: e2e interference on inference is smaller when multiplexing

inference with training

6

Tokenize/Data Preprocess Data Transfer Inference

• Inference with inference
Up to 3.19x Below 1.67x

• Inference with training

Interference of Multiplexing DL tasks

7

In-depth analysis of the reasons
Tokenize/Data Preprocess: Parallel, requiring substantial CPUs for execution, leading to

CPU contention

Data Transfer: The frequency of data transfers required by training is less than that of

inference

Inference: The control flow accounts for up to 72%[1] of the total execution time in the

inference stage

GPU and memory utilization is high when inference is multiplexed with training

[1] Chen Zhang, Lingxiao Ma, Jilong Xue, et al. Cocktailer: Analyzing and Optimizing Dynamic Control Flow in Deep Learning. In Proceedings of OSDI. 2023.

Multiplexing inference service with training tasks is more beneficial

8

Can we maintain low latency for inference and
high throughput for training?

Low latency High throughput

Inference services Training models

Challenges of Multiplexing
• C1: Dynamic workload arrivals

• Unpredictable QPS for inference and unobserved training tasks

• C2: Intricate Coupling
• Cluster-wide task colocation and device-level configuration

• C3: Large optimization space

• Packing patterns, SM% and batching sizes

9

Batching Sizes

SM Percentages Packing Patterns

Global Optimization

Mudi – New Multiplexing system for highly dynamic
DL workloads that prioritizes SLO-awareness

for inference

Key Ideas
I1: Explicit modeling of inference latency

• Use piece-wise linear function to fit the relationship

between latency and resource partitions

• Address large-optimization space

• Seamless coordination of cluster-wide co-location

and device-level interference control

10

I2: Predicting interference using underlying network architectures

• Use network architecture to estimate the slope of piece-wise linear function

• Adapt to dynamic training workloads

System Architecture: Mudi

• Offline Profiler: Profile the
interference latency curves of co-
located tasks

• Online Multiplexer: Record the
requests and make packing decisions

• Local Coordinator: Monitor QPS of
each inference and update
configurations

11

...

Device Selector

Local Coordinator
Monitor Tuner

Service Agent Training Agent

NVIDIA MPS

5 6

7

Memory Manager 8
Inference Pod Training Pod

Training Workloads

Online Multiplexer

...

YOLOS

Bert

Inference Requests

G B L

30 32 10

40 64 19

Interference
Modeler

Offline Profiler
Latency
Profiler

...
GPT2

2
Interference Predictor

3

Device stats Latency curve

1

N
C

F

... LS
TM

... VG
G

16

...

4

GPU Device

Inference Latency Quantification
• Inference Latency Profiling

• Fit piece-wise linear functions for each inference with various training tasks

• Online Prediction

12

• Utilize the network layers (which and how
many) and configs (bs, GPU%) as
Interference Predictor’s input

• Online Multiplexer forecasts the
interfered latency of inference based on
offline profiles

𝐿!,#$ = #
𝑘#,%$ ⋅ △$ − △& + 𝑙&, △$≤△&,
𝑘#,'$ ⋅ △$ − △& + 𝑙&, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Online Multiplexing Approach

• Optimization Model

• Objective

• Minimize the overall training time of all co-

located training tasks on each device

• Constraint

• The inference latency should meet the SLO

of each inference request

13

Placement GPU%

Batching size

min
𝑥($ 𝑏$ 𝛥$

;
(∈𝖠 +

;
$,%

𝖭

𝑥($ ⋅ 𝖨𝗍𝖾𝗋𝖺𝗍𝗂𝗈𝗇(𝑏$, 𝛥$

𝑠. 𝑡. ,
𝖶$

𝑏$
⋅ 𝖯$ 𝑏$, 𝛥$, 𝛹(≤ 𝖲𝖫𝖮$, ∀1 ≤ 𝑖 ≤ 𝖭,

𝛥$ ≤ 1, ∀1 ≤ 𝑖 ≤ 𝖭,

;
$,%

𝖭

𝑥($ = 1, 𝑎𝑛𝑑 𝑥($ ∈ 0 1 .

Cluster-wide workload co-location
• Cluster-wide co-location

• The Device Selector assigns training task to the device that yields the smallest slope

14

Find the best Placement

Inference A

Training A
…

GPU Cluster

Online Multiplexer

Interference Predictor

Device Selector

GPU 0

• Available GPUs: GPU1, GPU3, …

• Predict Interference: GPU1: 1.3, GPU3: 1.5, …

• Select optimal GPU device: GPU3

Training C

Inference B

GPU 1

Inference C

Training B
GPU 2

Inference D

GPU 3

Submit

Inference D
Training C

Device-level Multiplexing
• Adaptive Batching

• Use Gaussian Process (GP) as surrogate model and acquisition function based on the lower
confidence bound (LCB) to guide the exploration process

 min!!∈ℛ
𝒜 𝑏$ = 𝜇 𝑏$, 𝛥$ − 𝛽/

%/' 𝜎 𝑏$,△$.

• Dynamic Resource Scaling

• Find the optimal GPU% while meeting SLOs using CVXPY

• Use shadow instance to overlap the restarting cost of updating GPU%

15

Find the optimal Batching size

Find the optimal GPU%

△$= argmin𝛥, 𝑠. 𝑡. , ⁄𝖶$ 𝑏$ ⋅ 𝖯$ 𝑏$,△, 𝛹(≤ 𝖲𝖫𝖮$

Active Instance

Shadow Instance

Update GPU%

Find best GPU%
Preparing

Active Instance

×Destroyed

Optimality Analysis
• Identify the optimal co-location 92.67%

• Iteration time bounded by 1.10x

• SLO violation bounded by 1.08x (Optimal as 1.0)

ℰ ≤
1
𝑀;

(,%

1
𝒫 ⋅ 𝖨𝗍𝖾𝗋𝖺𝗍𝗂𝗈𝗇(∗ + 1 − 𝒫 ⋅ 𝖨𝗍𝖾𝗋𝖺𝗍𝗂𝗈𝗇(

3

16

Prediction Accuracy of
optimal co-location

All training jobs

Optimal cases Worst cases

System Optimization
• Extension to Multiplexing more tasks

• No more than three training (IADeep SC’23)

• Profile more samples (one inference with two/three training)

• Designate cumulative feature layers as

• Evenly distribute the unassigned resource partitions

• Memory Management

• Prevent out-of-memory errors

• Dynamically swap memory between GPU and host for training tasks

• A middleware between DL tasks and dynamic-link libraries
17

InferA TrainA One GPU

InferA TrainA
One GPU

TrainCTrainB

Memory Manager

GPU dynamic-link libraries

DL workloads

Experimental Setup
• Physical cluster – 3 physical servers with each equipes 4 A100 GPUs

• Large-scale cluster – use 1000 processes to simulate a 1000-GPU large-scale
cluster based on more profiles

• Baselines – GSLICE (SoCC’20), MuxFlow (ByteDance), gpulets (ATC’22)

• DL workloads – arrival rates follow Microsoft trace

18

End-to-End Performance
• SLO violations for inference

• As low as 0.5% (1.2%) in small / large cluster

• Achieve up to 6x SLO violation reduction

• CT for Training
• Achieve up to 2.27x CT reduction

• Simulator Fidelity

• Minor discrepancies of < 4.7% in SLO violation and CT

• Optimality Analysis

• Discrepancy of SLO violation is only 5.86%

• Training performance deviates from Optimal by no more

than 5%
19

6x

2.27x

Simulator Optimal

End-to-End Performance

20

• GPU Utilization in physical cluster

• SM utilization improvement 37%

• Memory utilization improvement 19%

• Effective co-design of cluster-level and device-level
multiplexing

78% 103% 67%
89%

85% 73%

• System Throughput

• Increase requests loads until the SLO is not
satisfied

• Achieve up to 103% throughput for all inferences

End-to-End Performance

21

• Sensitivity to Heavy loads

• Higher SLO violations / longer CTs with
increasing loads

• Mudi exhibits a nonlinear increase and
surpasses the baselines for all cases

• System Overhead

• Tuning iteration <25

• Multiplexing overhead <18ms in physical
cluster and <30ms in simulated cluster

Below 25
Below 30ms

Below 18ms

More evaluations

• Accuracy of interference modeling

• Effectiveness of cluster-level co-location

• Effectiveness of per-device control

• Capability to handle more training tasks

• …

22

Problem: How to maintain low latency of inference and high throughput for
training?

 Key Insight - Multiplexing training with inference has much lower interference
on inference services

 Key Ideas

 - Explicit modeling of inference latency using piece-wise linear functions
- Predicting interference using underlying network architectures

 Results - Mudi reduces CT of training by 2.27x with SLO compliance for
inference requests

23

Summary

Thanks & QAyc17498@um.edu.mo

