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Deep learning (DL) inference with GPUs
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Inference services

waiting time + 
execution time < 30ms

GPU clusters

• GPUs are widely used as inference accelerators

• Service-level objective (SLO) must be satisfied

• Batching is used to handle inference requests  

…
Submit requests

Respond



DL inference in GPU clusters
Inference requests - Fluctuating and unpredictable 

    GPU resource – Underutilization and over-provisioning
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Approaches to Improve GPU Utilization

Packing multiple tasks on the same GPU via time sharing or spatial sharing

Spatial sharing

Time sharing
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• Rounded-based interleaved execution of various tasks
• Increase utilization by reducing idle GPU cycles

• MPS  
• Small granularity of resource allocation (1%~100%)

• MIG 
• Limited resource allocation strategies available (18 

cases)
• Large allocation strategy change overhead (restart all 

instances)

More flexible 

Less flexible; Higher Cost 

Good!

Still underutilize spatial resources

GPU Time

Task A
Task B

Task A

GP
U

 R
es Idle Idle



Spatial Multiplexing of  GPUs 
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GPU

Inference with inference
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Interference of  Multiplexing DL tasks
• Breakdown the executing process of inference

• Observation: e2e interference on inference is smaller when multiplexing 

inference with training
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Tokenize/Data Preprocess Data Transfer Inference

• Inference with inference 
Up to 3.19x Below 1.67x

• Inference with training 



Interference of  Multiplexing DL tasks
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In-depth analysis of the reasons 
Tokenize/Data Preprocess: Parallel, requiring substantial CPUs for execution, leading to 

CPU contention

Data Transfer: The frequency of data transfers required by training is less than that of 

inference

Inference: The control flow accounts for up to 72%[1] of the total execution time in the 

inference stage 

GPU and memory utilization is high when inference is multiplexed with training   

[1] Chen Zhang, Lingxiao Ma, Jilong Xue, et al. Cocktailer: Analyzing and Optimizing Dynamic Control Flow in Deep Learning. In Proceedings of OSDI. 2023.

Multiplexing inference service with training tasks is more beneficial
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Can we maintain low latency for inference and 
high throughput for training?

Low latency High throughput

Inference services Training models



Challenges of Multiplexing
• C1: Dynamic workload arrivals

• Unpredictable QPS for inference and unobserved training tasks

• C2: Intricate Coupling
• Cluster-wide task colocation and device-level configuration

• C3: Large optimization space

• Packing patterns, SM% and batching sizes
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Batching Sizes

SM Percentages Packing Patterns

Global Optimization

Mudi – New Multiplexing system for highly dynamic 
DL workloads that prioritizes SLO-awareness 

for inference



Key Ideas
I1: Explicit modeling of inference latency

• Use piece-wise linear function to fit the relationship 

between latency and resource partitions

• Address large-optimization space

• Seamless coordination of cluster-wide co-location 

and device-level interference control
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I2: Predicting interference using underlying network architectures

• Use network architecture to estimate the slope of piece-wise linear function

• Adapt to dynamic training workloads 



System Architecture: Mudi

• Offline Profiler: Profile the 
interference latency curves of co-
located tasks

• Online Multiplexer: Record the 
requests and make packing decisions

• Local Coordinator: Monitor QPS of 
each inference and update 
configurations
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Inference Latency Quantification
• Inference Latency Profiling

• Fit piece-wise linear functions for each inference with various training tasks

• Online Prediction
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• Utilize the network layers (which and how 
many) and configs (bs, GPU%) as 
Interference Predictor’s input

• Online Multiplexer forecasts the 
interfered latency of inference based on 
offline profiles  
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Online Multiplexing Approach

• Optimization Model

• Objective

• Minimize the overall training time of all co-

located training tasks on each device

• Constraint

• The inference latency should meet the SLO 

of each inference request
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Cluster-wide workload co-location
• Cluster-wide co-location

• The Device Selector assigns training task to the device that yields the smallest slope 
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Find the best Placement 
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Device-level Multiplexing 
• Adaptive Batching

• Use Gaussian Process (GP) as surrogate model and acquisition function based on the lower 
confidence bound (LCB) to guide the exploration process

 min!!∈ℛ
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• Dynamic Resource Scaling

• Find the optimal GPU% while meeting SLOs using CVXPY

• Use shadow instance to overlap the restarting cost of updating GPU% 
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Find the optimal Batching size 

Find the optimal GPU% 

△$= argmin𝛥, 𝑠. 𝑡. , ⁄𝖶$ 𝑏$ ⋅ 𝖯$ 𝑏$ ,△, 𝛹( ≤ 𝖲𝖫𝖮$

Active Instance

Shadow Instance

Update GPU%

Find best GPU%
Preparing

Active Instance

×Destroyed



Optimality Analysis
• Identify the optimal co-location 92.67%

• Iteration time bounded by 1.10x

• SLO violation bounded by 1.08x (Optimal as 1.0)
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Prediction Accuracy of 
optimal co-location  

All training jobs

Optimal cases Worst cases



System Optimization
• Extension to Multiplexing more tasks

• No more than three training (IADeep SC’23)

• Profile more samples (one inference with two/three training)

• Designate cumulative feature layers as 

• Evenly distribute the unassigned resource partitions

• Memory Management

• Prevent out-of-memory errors

• Dynamically swap memory between GPU and host for training tasks

• A middleware between DL tasks and dynamic-link libraries
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InferA TrainA One GPU

InferA TrainA
One GPU
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Memory Manager

GPU dynamic-link libraries

DL workloads



Experimental Setup
• Physical cluster – 3 physical servers with each equipes 4 A100 GPUs 

• Large-scale cluster – use 1000 processes to simulate a 1000-GPU large-scale 
cluster based on more profiles 

• Baselines – GSLICE (SoCC’20), MuxFlow (ByteDance), gpulets (ATC’22) 

• DL workloads – arrival rates follow Microsoft trace
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End-to-End Performance
• SLO violations for inference

• As low as 0.5% (1.2%) in small / large cluster

• Achieve up to 6x SLO violation reduction 

• CT for Training
• Achieve up to 2.27x CT reduction 

• Simulator Fidelity

• Minor discrepancies of < 4.7% in SLO violation and CT

• Optimality Analysis

• Discrepancy of SLO violation is only 5.86%

• Training performance deviates from Optimal by no more 

than 5%
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6x

2.27x

Simulator Optimal



End-to-End Performance
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• GPU Utilization in physical cluster

• SM utilization improvement 37%

• Memory utilization improvement 19%

• Effective co-design of cluster-level and device-level 
multiplexing

78% 103% 67%
89%

85% 73%

• System Throughput

• Increase requests loads until the SLO is not 
satisfied

• Achieve up to 103% throughput for all inferences 



End-to-End Performance
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• Sensitivity to Heavy loads

• Higher SLO violations / longer CTs with 
increasing loads

• Mudi exhibits a nonlinear increase and 
surpasses the baselines for all cases

• System Overhead

• Tuning iteration <25 

• Multiplexing overhead <18ms in physical 
cluster and <30ms in simulated cluster 

Below 25
Below 30ms

Below 18ms



More evaluations

• Accuracy of interference modeling

• Effectiveness of cluster-level co-location

• Effectiveness of per-device control

• Capability to handle more training tasks

• …
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Problem: How to maintain low latency of inference and high throughput for 
training?

     Key Insight - Multiplexing training with inference has much lower interference 
on inference services

     Key Ideas 

 - Explicit modeling of inference latency using piece-wise linear functions       
- Predicting interference using underlying network architectures 

    Results - Mudi reduces CT of training by 2.27x with SLO compliance for 
inference requests 
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Summary

Thanks & QAyc17498@um.edu.mo


