Multiplexing Dynamic Deep Learning Workloads
with SLO-awareness in GPU Clusters

Wenyan Chen'?, Chengzhi Lul%3, Huanle Xu?!, Kejiang Ye? and Chengzhong Xu*

lUniversity of Macau
2Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
3University of Chinese Academy of Sciences

Deep learning (DL) inference with GPUs

 GPUs are widely used as inference accelerators
« Service-level objective (SLO) must be satisfied

« Batching is used to handle inference requests

Inference services

o) _ Submitrequests GPT - ResNet -
8% - .

Respond | . s s seeses

waiting time + { E E E E }

execution time < 30ms

GPU clusters

DL inference in GPU clusters

@ Inference requests - Fluctuating and unpredictable

| GPU resource — Underutilization and over-provisioning

—— Inference A -——— Inference B

Dynamic

0 200 400 600 800 1000 1200 1400
Time (min)

Actua[ly Used (a) QPS distribution

1.00
0.75
5 0.50
5 o.
0.25
0.00

0 20 40 60 80 100
GPU Utilization (%)
(b) GPU utilization

Approaches to Improve GPU Utilization

Packing multiple tasks on the same GPU via time sharing or spatial sharing

Time sharing

Spatial sharing

m dle Still underutilize spatial resources
{ IEN @A

GPU Time

GPU Res

e MPS Good!

« Small granularity of resource allocation (1%~100%)

I\, [Tcl Less flexible; Higher Cost

* Limited resource allocation strategies available (18
cases)

* Large allocation strategy change overhead (restart all
instances)

GPU Res

GPU Time

Spatial Multiplexing of GPUs

£ Inference with inference or Inference with training

Interference of Multiplexing DL tasks

« Breakdown the executing process of inference

Data Transfer Inference

« Observation: e2e interference on inference is smaller when multiplexing

inference with training

* Inference with inference * Inference with training

Up to 3.19x Below 1.67x
6 1 Tokenize Inference 8 4 Data preprocess Ipnference _— Tokenize Inference o 2 Data preprocess Lnffrence
8 B Data transfer Il E2E - ; c _- Data transfer EN E2E o B Data transfer B E2E o, . = Data transfer WM E2E
g j‘ﬁ\> @ v o ~ g — |
~ - - oy \bﬁ\
£ £ D ek b 5 >
— - 2 . L
0- 0-
ol 0- 10 @0 g W e 1 @0 &M W o
G e o G & o
: . . N© A 1© NG A &
gesNe‘?(?ceC"‘onﬁEm goBf-‘“a pva c,?"l\ “Cepnoﬂgﬁ“" 906?—9‘“ pvO- e %\,e"- e sﬂoeel
(a) GPT2 (b) ResNet50 (a) GPT2 (b) ResNet50

Interference of Multiplexing DL tasks

In-depth analysis of the reasons

'l Tokenize/Data Preprocess: Parallel, requiring substantial CPUs for execution, leading to

CPU contention

&3 Data Transfer. The frequency of data transfers required by training is less than that of

inference

& Inference: The control flow accounts for up to 72%![" of the total execution time in the

inference stage

™ GPU and memory utilization is high when inference is multiplexed with training

Multiplexing inference service with training tasks is more beneficial

[1] Chen Zhang, Lingxiao Ma, Jilong Xue, et al. Cocktailer: Analyzing and Optimizing Dynamic Control Flow in Deep Learning. In Proceedings of OSDI. 2023.

Can we maintain low latency for inference and
high throughput for training? ©)

Low latency High throughput

Inference services -— Training models

Mudi - New Multiplexing system for highly dynamic
DL workloads that prioritizes SLO-awareness
for inference

Key ldeas

= 1,2 Explicit modeling of inference latency

» Use piece-wise linear function to fit the relationship

1$1 841 atching size Y - y
between latency and resource partitions "1 Datehing VGG16 - LSTM

\ 32128 | _ i -v- ResNet50 -~ NCF
0.6 | cutoff ... 64 - 256 | @ 157 ‘ SqueezeNet
A\ _

ot
wv

Latency(s)
o
P
g

» Address large-optimization space

Latency(s)

~ 1.0
024" Y/ At \ﬁl
00 Bl L gy v 0.5 - ‘Q{.;.;_;;_;_;_:L",.__i
« Seamless coordination of cluster-wide co-location R f-'c; pmi‘i 80 100 0 ,% puﬁ‘i 80 100
. . (a) GPT2 with solo-run (b) GPT2 with colo-run
and device-level interference control . e

% 1,: Predicting interference using underlying network architectures

Use network architecture to estimate the slope of piece-wise linear function

« Adapt to dynamic training workloads

10

System Architecture: Mudi

« Offline Profiler: Profile the
interference latency curves of co-
located tasks

 Online Multiplexer: Record the
requests and make packing decisions

 Local Coordinator: Monitor QPS of
each inference and update
configurations

Training Workloads Pchc;)rch

TensorFlow

4 7/.)'/.)'

Offline Profiler

7

\.

Latencq ! ﬂ .
+ | Profiler
[i> Interference Predictor

(i
\ Interference Device gelector
Modeler
_

nllne Multiplexer

4]

—_
Device statsj ELatency curve

Inference Requests

GPT2

YOLOS N
E& E& R J
Bert h-v

5]

Monitor

Local Coordinator
Tuner]

| Service Agent |

Inference Pod

| Training Agent
Training Pod

[NVIDIAMPS][Memory Manager ®

GPU Device

11

Inference Latency Quantification

* Inference Latency Profiling

 Fit piece-wise linear functions for each inference with various training tasks

A k‘l;”,l) (Ai - Ao) + Lo, A=A,
o ktl;v,z - (A;j — Ag) + 1y, otherwise.
* Online Prediction
« Utilize the network layers (which and how [,
many) and configs (bs, GPU%) as Batd{Nom > T |
Interference Predictor’s input S
=
. . § Fla:ten 1\ Feature :
* Online Multiplexer forecasts the b— > layers
interfered latency of inference based on e

offline profiles

................

Cfi"V Feature
Pooling layers
.J Other
F'{e layers
1 Feature
Conv
. layers
} Feature
Softmax layers
SqueezeNet

Online Multiplexing Approach

- Optimization Model

« Objective
« Minimize the overall training time of all co- _
min
located training tasks on each device {x/bpA;}
s.t

e Constraint

* The inference latency should meet the SLO

of each inference request

M /
Z z xji - Iteration; (b;, 4;)
JEA(t) i=1 —

W; .
oo P;(b;,4;,¥;) <SLO;, V1 <i<N,
i

A; <1, V1<i<N,

N
z x; = 1,and x} e {0 1}.

i=1

13

Cluster-wide workload co-location
 Cluster-wide co-location

» The Device Selector assigns training task to the device that yields the smallest slope

Online Multiplexer e Available GPUs: GPU1, GPU3, ...
@ :

— Interference Predictor

Device Selector * Select optimal GPU device: GPU3

GPU 0O GPU 1 GPU 2 GPU 3
GPU Cluster 14

* Predict Interference: GPU1: 1.3, GPU3: 1.5, ...

Device-level Multiplexing
* Adaptive Batching

« Use Gaussian Process (GP) as surrogate model and acquisition function based on the lower
confidence bound (LCB) to guide the exploration process

minA(b;) = u(by, 4) = By *\Ja(bi,8).

« Dynamic Resource Scaling

* Find the optimal GPU% while meeting SLOs using CVXPY

A;= argmind, s.t., W;/b; - Pi(bi,A,'Pj) < SLO;

« Use shadow instance to overlap the restarting cost of updating GPU%

Dest d
Update GPU%l [Active Instance ’j estoye

Find best GPU%T[Shadow Instance | Active Instance |
Preparing 15

Optimality Analysis
« |dentify the optimal co-location 92.67%

* Iteration time bounded by 1.10x

» SLO violation bounded by 1.08x (Optimal as 1.0)

1 M o
€ < szzl(? -[Iteratlonj}+ (1-—

/

P) {Iterationﬂ)

16

System Optimization

 Extension to Multiplexing more tasks

One GPU
* No more than three training (IADeep SC’'23)

* Profile more samples (one inference with two/three training)
» Designate cumulative feature layers as v One GPU

« Evenly distribute the unassigned resource partitions

* Memory Management

DL workloads
* Prevent out-of-memory errors
* Dynamically swap memory between GPU and host for training tasks

* A middleware between DL tasks and dynamic-link libraries GPU dynamic-link libraries

17

Experimental Setup

cluster based on more profiles

Table 1. Inference services with SLOs from various domains

Field Model Dataset

Param (M) SLO (ms)

ResNet50 [25] ImageNet [13] 25.6
Inception [65] ImageNet 23.8

*x GPT2[52] SQuAD [53] 335
© BERT [14] SQUAD 110
&+ RoBERTa[40] SQuAD 125
& YOLOS[16] COCO [39] 30.7

150
120
100
330
110
2200

Image Classification * Text Generation © Language Modeling & Ques-

tion Answering & Object Detection.

Physical cluster — 3 physical servers with each equipes 4 A100 GPUs

DL workloads — arrival rates follow Microsoft trace

Table 3. DL training tasks from various domains

Baselines - GSLICE (SoCC’20), MuxFlow (ByteDance), gpulets (ATC’22)

Field Task Name Dataset Optimizer batchsize Size Frac.
VGG16 [60] CIFARIO [36] Adam 512 S 14%
SqueezeNet [31] CIFARI10 Adam 512 S 14%
ResNet50 [25] CIFAR100 [36] Adam 1024 S 14%

[NCF [26] MovieLens [23] SGD 1024 M 12%

& LSTM[49] Wikitext-2 [42] Adadelta 256 M 12%
O AD-GCL[64] Reddit[3] Adam 64 M 12%

s Bert [14] SQuUAD [53] AdamW 32 L 12%

& YOLOV5[33] COCO [39] SGD 64 L 10%
ResNet18 [25] ImageNet [13] SGD 128 XL 2%

Image Classification >~ Recommendation System O Social Network ©

Language Modeling # Object Detection # Question Answering.

Large-scale cluster — use 1000 processes to simulate a 1000-GPU large-scale

18

End-to-End Performance

4 {7 GSLICE -~ MuxFlow & Mudi-s
- gpulets 4 Mudi

w
1

/A\
2l S
\.\
AN 6x*
v Wi g el gl—
T

T T

N
1

SLO Violations(%)
et

o

T T T

\49‘60e9(\0

2 e T3 02 Wy
et \nd! ! 66&9\036\0\‘0 o
(a) Small-scale

Simulator

GSLICE MuxFIow{. Mudi—sl

1- gpulets I Mudi

o
1 fo e
2 ,?v_\\? “’?.

CT WaitingT Makespan
(a) Small-scale

GSLICE-s - MuxFlow-s sOptimal
|#gpulets-s &Mudi-s

& wn

/’A\\
& -

l ~g @0
=

- -
- ~

SLO Violations(%)

o = N W
1 1 1

T T T T T T T

Q\e‘:“\%‘\)feoi\o&{l 6e(‘\>~03<""(i5(‘%>\'0‘5 a4

(b) Large-scale

Optimal

4 [AGSLICE-s A MuxFlow-s [EOptimal
1Igpulets-s B Mudi-s

CcT WaitingT Makespan
(b) Large-scale

SLO violations for inference
 Aslow as 0.5% (1.2%) in small / large cluster

» Achieve up to 6x SLO violation reduction

CT for Training
» Achieve up to 2.27x CT reduction

Simulator Fidelity

* Minor discrepancies of < 4.7% in SLO violation and CT

Optimality Analysis
» Discrepancy of SLO violation is only 5.86%

» Training performance deviates from Optimal by no more

than 5%

19

End-to-End Performance

80

GSLICE
60
gpulets
40
MuxFlow

0 4000 8000 12000
Time

(a) SM utilization

£ 1600- 78% 1

ResNet50 Inception

%

GSLICE
30

ulets
ap 20

MuxFlow

Time

(b) Memory utilization

GSLICE M gpulets MuxFlow Il Mudi

8% 73%

GPT2 BERT RoBERTa YOLOS

« GPU Utilization in physical cluster

SM utilization improvement 37%
Memory utilization improvement 19%

Effective co-design of cluster-level and device-level
multiplexing

« System Throughput

Increase requests loads until the SLO is not
satisfied

Achieve up to 103% throughput for all inferences

20

End-to-End Performance

- GSLICE MuxFlow
£4- B gpulets HEE Mudi

1x 2x 3x ax
Relative Load

(a) SLO violation

1.0 hvsical cl ~ pr—
0.8- —p. ysical cluster ,r/
B 0.6 - simulator - elow 25
U 0.4 —J,J'J
0.2
0.0- "’J

1 T 1 1

10 15 20 25
Tuning lterations

(a) Tuning iterations

Sie GSLICE MuxFlow
5 -¥-- gpulets —&- Mudi '
. 2.0 o
g Y
2 5 ',..."'_._ E]
| . o
1=
T T T J
1x 2x 3x 4x
Relative Load
(b) Norm. CT
Below 18ms
1.0+
0.8 - Below 30ms
'-5 0.6
U 0.4 — physical cluster
0.2 simulator
0.0 7 T T

T T
10 15 20 25 30
Multiplexing Overhead{ms)

(b) Multiplexing overhead

« Sensitivity to Heavy loads

» Higher SLO violations / longer CTs with
increasing loads

* Mudi exhibits a nonlinear increase and
surpasses the baselines for all cases

System Overhead
« Tuning iteration <25

« Multiplexing overhead <18ms in physical
cluster and <30ms in simulated cluster

21

More evaluations

 Accuracy of interference modeling

Effectiveness of cluster-level co-location

Effectiveness of per-device control

Capability to handle more training tasks

[X X 4

22

Summary

i~ Problem: How to maintain low latency of inference and high throughput for
training?

@ KRey Insight - Multiplexing training with inference has much lower interference
on inference services

=% Key Ideas

- Explicit modeling of inference latency using piece-wise linear functions
- Predicting interference using underlying network architectures

& Results - Mudi reduces CT of training by 2.27x with SLO compliance for
inference requests

) ¥c17498@um.edu.mo Than ks & QA

